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Different locations in the visual environment vary greatly
in terms of how likely they are to draw a person’s
attention. When inferring the most likely target of
another person’s gaze, it would therefore be a
reasonable strategy to incorporate expectations about
the relative visual salience of these various locations,
weighing this prior knowledge against incoming social
signals (e.g., eye cues). This Bayesian approach to
modeling gaze perception has informed computer vision
techniques, but whether this model accounts well for
human performance remains an untested hypothesis.
We present subjects with a ‘‘gazer’’ fixating his eyes on
various locations on a two-dimensional surface, and
project arbitrary photographic images onto that surface.
Subjects judge where the gazer is looking in each image.
A full Bayesian model, which takes image salience
information into account, fits subjects’ gaze judgments
better than a reduced model that only considers the
perceived direction of the gazer’s eyes. Varying the
amount of time the subject is allowed to view the gazer
reveals that center bias tends to dominate gaze
judgments early, whereas salient features specific to the
projected image influence judgments at longer viewing
durations.

Introduction

The target of another person’s gaze is a strong cue
for where that person is directing his or her visual
attention, and therefore what may be on his or her
mind moment to moment (Pärnamets, Johoansson,
Hall, Balkenius, & Spivey, 2015). Additionally, because
people (and other animals) tend to direct their visual
attention to the informative and behaviorally relevant
areas of the environment (Mackworth & Morandi,
1967), the ability to infer another’s attention (via gaze,
as a proxy) also helps to reveal the important things

that may be happening in a person’s immediate vicinity
(Byrne & Whiten, 1991).

The direction of another person’s eye fixation is a
robust and precise cue for tracking gaze (and therefore,
attention), and it is therefore unsurprising that the
human visual system has evolved to process this social
signal with remarkable accuracy and efficiency (Cline,
1967; Gale & Monk, 2000; Symons, Lee, Cedrone, &
Nishimura, 2004; Bock, Dicke, & Thier, 2008).
However, no perceptual signal is perfectly noiseless in
its extraction and unambiguous in its interpretation. As
such, secondary cues like head position (Wallaston,
1824; Ken, 1990; Langton, 2000) or even facial
expression (Martin & Rovira, 1982; Lobmaier, Tidde-
man, & Perrett, 2008) concurrently inform the judg-
ment of where another person is looking.

But additionally, if one had reliable intuitions about
where in the visual scene another person would be
likely to direct his or her gaze—a priori of extracting
the signal from his or her eyes—then this contextual
information could potentially be integrated with the eye
cue to improve the inference of gaze direction. Past
experiments have indeed demonstrated the influence of
context on human gaze perception, with people
showing a bias that another person’s gaze is directed
toward them (Ken, 1990; Mareschal, Calder, &
Clifford, 2013) or at objects (Lobmaier, Fischer, &
Schwaninger, 2006; Wiese, Zwickel, & Müller, 2013).
Each of these individual empirical findings make sense
given basic intuitions about human nature—that is,
objects and faces would naturally be regions of interest
in a counterpart’s visual scene (Yarbus, 1967), and even
the most mundane face is surely more interesting than,
say, the empty space immediately to the left and right
of it.

But in turn, it should be clear that all of the locations
in the counterpart’s visual environment (including
one’s own face) are salient to varying degrees—that is,
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a priori more or less likely to capture the other person’s
visual attention. We appeal to the more general case,
and predict that prior considerations with respect to
presumed visual salience should systematically factor
into human gaze perception. This basic approach—
combining perceptual cues from the target person’s
eyes (or head position, etc.) with the visual salience of
the scene—has been exploited to improve the accuracy
of computer vision algorithms in both the discrimina-
tion of gaze direction (Hoffman, Grimes, Shon, & Rao,
2006; Yücel et al., 2013) and in the related task of
identifying where another person is pointing
(Schauerte, Richarz, & Fink, 2010). We here test
whether human gaze perception employs a similar
mechanism, asking whether the performance of a
model like this would be consistent with an observer’s
judgments of the most likely target of another
individual’s gaze (regardless of whether the observer’s
judgment is correct with respect to ground truth).

Our experimental subjects view photographs of a
young man gazing at various locations on a partially
transparent surface situated between him and the
camera. The experimental task is to indicate where on
this surface this ‘‘gazer’’ is looking, a task that we define
computationally as the inference of the location [x, y]
within the continuous two-dimensional (2-D) plane
where the photographed individual is gazing (Gx,y)
given the gaze directional cue from the eyes of the
person (D) and the image presented in that plane (I).
Bayes’ rule yields the posterior probability distribution,
continuous over the 2-D hypothesis space:

pðGx;yjDÞ}pðDjGx;yÞpðGx;yÞ: ð1Þ
In our treatment, the prior—p(Gx,y)—is equivalent

to the relative visual salience of location [x, y] within
image I, where salience is some model of where people
are a priori likely to direct their visual attention and
fixation. This study explores whether a Bayesian model
that incorporates a visual salience map as a prior can
account for actual human subjects’ gaze judgments
better than a model that ignores this information, and
uses only the eye cues.

Experiment 1

In Experiment 1, we presented subjects with a gazer
fixating his eyes on various locations on a 2-D surface,
and projected arbitrary photographs onto that surface.
We developed two models—a full Bayesian model that
takes the relative a priori salience of locations in the
image into account, and a reduced model that only
considers the perceived direction of the gazer’s eyes—
and assessed how well these models predicted subjects’
judgments of where the gazer was looking.

Methods

Subjects

All subjects gave written informed consent in
accordance with the tenets of the Declaration of
Helsinki. Twenty-three undergraduates at Indiana
University received course credit for their participation
in the experiment.

Stimuli: Photographs of the gazer

We took a set of photographs of a young man (the
‘‘gazer’’) seated behind a glass surface. In each
photograph, the gazer fixated his eyes on a different
location on the glass surface, where a grid of points had
been marked (later, these marks were digitally removed
from the photographs, leaving no observable trace).
Though other cues (such as head position) can also be
exploited to infer the target of gaze, for this experiment
we aimed only to vary the eye cues among these
photographs. Therefore, the gazer maintained minimal
head and body movement as he fixated on the various
locations on the glass surface.

The height of the origin of this grid of points, the
camera lens, and the center point between the gazer’s
eyes was 125 cm. The glass surface was 115 cm from the
gazer’s face, and 160 cm from the camera. The gazer’s
face was lit from above, both from the left and right, so
as to avoid casting heavy shadows on his face. The
photographs were taken with a Canon EOS Digital
Rebel XT camera, a 50-mm lens, 1/125-s exposure time,
and no flash. The original resolution of these photo-
graphs was 3456 3 2304 pixels.

Thirty-three photographs were used in the experiment.
One of these photographs was taken with the gazer
fixating on the origin (i.e., straight ahead, and directly
into the camera), and the other 32 photographs were
taken with the gazer fixating on 32 respective marks
arranged in a lattice of seven rows and nine columns. The
first, third, fifth, and seventh rows of this lattice each
consisted of five marks, evenly spaced at 10-cm intervals.
The second, fourth, and sixth rows of this lattice each
consisted of four marks, also evenly spaced at 10-cm
intervals, but offset by 5 cm with respect to the odd rows.

The experiment was presented on a 25603 1440 pixel
display. One of the 33 photographs of the gazer appeared
in every trial of the experiment, within a 12003800 pixel
window at the center of the display. The unused,
background portion of the display (falling outside of the
edges of the 12003 800 pixel window) was made gray.

For every trial, a rectangular gray frame (inner
dimensions: 550 3 733 pixels; outer dimensions: 570 3
753 pixels) was superimposed on the photograph. When
the gazer had been photographed, he had always fixated
on locations that would have fallen within this gray
frame. Either an image (for Block 1) or uniform gray
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(for Blocks 2–5) was presented within the rectangular
gray frame in each presented scene, and alpha blended
(at a¼ 180, where 0 is fully transparent and 255 is fully
opaque) with the background photograph of the gazer
(see Figure 1). For the subject, this created a perceptual
effect akin to the subject and gazer being on opposite
sides of a partially transparent surface, with the gazer’s
silhouette faintly visible through it. Only a tight ellipse
around the gazer’s eyes was fully visible through the
image, with the area around the eyes smoothly
transitioning to greater opacity. Thus, in either condi-
tion (projected image, or uniform gray), the gazer’s eyes
were made fully visible to the subject, and presented
simultaneously with the supposed target of his gaze.

Stimuli: Projected images

For the first block of trials, imageswere projected onto
the plane uponwhich the gazer had fixated. The 165 color
images (a subset of a pool of images provided by Judd,
Ehinger, Durand, & Torralba, 2009) included a wide
rangeof indoorandoutdoor scenes, 51ofwhichcontained
people. We selected this subset of 165 images from the
larger pool on the basis that they were all of a consistent
size (76831024 pixels). For this experiment, these images
were resized to fit the presented 5503733 frame.

Procedure

The experiment was programmed in MATLAB
using the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997). It consisted of five blocks, each consisting of 165
trials. The subject took a 5-min break after the third
block.

Before the first trial of each block, four photographs
were displayed in succession, each for 1 s. In these four

photographs, the gazer was fixated on four respective
locations (marked with 8-3 8-pixel black squares) near
the four respective corners of the gazed-upon glass
surface. This was a calibration of sorts for the subject,
who could get a sense of how the gazer’s eyes were
positioned when he had been photographed fixating on
the extremes of the glass surface.

Each trial began with a black fixation cross,
presented at the center of the screen for 1.4 s against a
gray background. The subject was then presented with
a static scene. Over the course of each block of scenes,
each of the 33 photographs of the gazer (fixated on 33
respective locations) was featured five times, with these
165 total trials being randomly shuffled.

For the first block, one of 165 color images (from the
Judd et al., 2009 set) was randomly assigned to each of
these 165 trials and projected into the frame in front of
the gazer; thus, the projected images and the photo-
graphs of the gazer were randomly paired, and the
contents of the respective images varied independently
of the actual target of gaze. Though the scenes were
perceptually realistic, the subject was not explicitly
instructed that the gazer was (or was not) truly gazing
upon an actual physical image present in front of him
when the photographs had been taken. Upon debrief-
ing, most subjects expressed skepticism that the gazer
was actually looking at the photographs, especially
after having viewed multiple trials in which the gazer
was seemingly fixating on irrelevant areas of the
images.

For the second through fifth blocks, the frame in
front of the gazer was filled with a uniform gray. Five
hundred milliseconds after the presentation of this
scene, a 10-310-pixel red square appeared at a random
location within the frame, and could be controlled with
the mouse. After the time when this red cursor

Figure 1. Experiment 1. After the presentation of a fixation cross for 1400 ms, the scene appeared. After 500 ms, a mouse cursor

appeared as a red square at a random location within the projected image (this image was a photograph in Block 1, and uniform gray

in Blocks 2–5). The subject indicated with a mouse click where he or she thought the gazer was looking. After the subject clicked, the

next trial began. (Note: The fixation crosses and red mouse cursors are enlarged in this Figure to be more visible.)
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appeared, the subject could indicate with a mouse click
where, within the frame, he or she believed that the
gazer was looking. There was no enforced time limit for
this task, and the entire scene remained on the screen
until the subject responded. After the subject clicked,
the next trial began. The experimental procedure for
each trial is illustrated in Figure 1.

Bayesian model

The likelihood: Using cues from the eyes of the gazer

Computational treatments of the problem of
discriminating the target of another person’s gaze from
eye and head cues (e.g., Kim & Ramakrishna, 1999;
Hoffman et al., 2006; Yücel et al., 2013; Gao, Harari,
Tenenbaum, & Ullman, 2014) often model gaze as a
vector or blurry cone emanating from the gazer’s face
and intersecting with surfaces in the environment. A
complete, self-contained algorithm for judging another
person’s gaze would employ one of these rigorous
computer vision approaches in order to compute what
we here define as the likelihood function: L(Gx,yjD).

We instead derive the likelihood function empirically
from each subject’s gaze judgments recorded during
Blocks 2–5. (These were the trials for which the gazer
was presented as viewing uniform gray surface.) We
associate each photograph of the gazer—associated
with the gazer’s eyes being fixated in one of 33
directions—with a 2-D likelihood function, which we
assume to be elliptical (a bivariate Gaussian distribu-
tion). This assumption of an elliptical shape makes
sense if one imagines a cone of gaze emanating from the

gazer’s eyes (see also Gamer & Heiko, 2007), because
the intersection of this cone with the gazed-upon planar
surface would be elliptical in shape (indeed, this is the
geometric definition of an ellipse, one of the basic types
of conic section).

After collecting responses from each subject as he or
she cycled 20 times through the complete set of 33 eye
directions, we estimated the mean (l) and 2 3 2
covariance matrix (R) of all 33 Gaussian ellipses
comprising a complete set of personalized likelihood
functions. Each of these probabilistic 2-D likelihood
maps was renormalized to sum to 1. For an example of
one elliptical likelihood map derived for one experi-
mental subject with respect to one of 33 directional cues
from the gazer’s eyes, see Figure 2A.

The prior: Using contextual salience information

We hypothesized that it would be expedient for the
human visual system to exploit context in the service of
a predictive model of where other people are a priori
likely to look in a scene. Many computer vision models
have already been developed to serve precisely this
function—predicting where human observers are likely
to fixate their visual attention in a given image (e.g.,
Itti, Koch, & Niebur, 1998; Harel, Koch, & Perona,
2006; Tavakoli, Rhatu, & Heikkilä, 2011)—and the
performance of many of these models has been
systematically benchmarked (at saliency.mit.edu).

The algorithm put forth by Judd et al. (2009)
incorporates low-level visual features (e.g., intensity
and color contrast), higher level features (e.g., face
detection), and a prior bias toward the center. We use

Figure 2. Left: Likelihood. Subjects indicated where they thought the person in the photo was looking, within a uniform gray area. The

‘‘gazer’’ was shown fixating on each of 33 target locations within the frame, 20 times per subject. Here, the white dots represent the

20 locations selected by one actual subject (via mouse click) when presented with this same scene. We fit a Gaussian ellipse to these

20 points (superimposed here on the scene), and this ellipse enters into the computational model as the likelihood function with

respect to this particular directional cue from the eyes of the gazer. Center: Prior. During the first block of the experiment, images

were projected into the frame, and subjects indicated where in the picture they thought the person in the photo was looking. Here,

we superimpose the salience map corresponding to this particular image, a continuous 2-D function that enters into the

computational model as the prior. Right: Posterior. The posterior probability outputted by the Bayesian model (superimposed here on

a screenshot from the experiment) is a multiplication of the likelihood function (given this gaze direction) and prior (given this image).

For this particular trial, we present one possible location a subject may have clicked, as a small white bullseye.We assess the model’s

performance on a given trial as the likelihood of the subject’s gaze judgment given the model’s posterior prediction map.
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their salience model because they make freely available
(a) MATLAB code for their salience model, (b) a set of
images against which their salience algorithm has been
validated and against which other algorithms have been
tested for comparison, and (c) precomputed salience
maps corresponding to these images. In our Bayesian
treatment, we set the prior—corresponding to the
gazed-upon image in the scene—to a 2-D map of the
relative visual salience of locations within it (as defined
by the Judd et al. algorithm). This computed salience
serves as a simplified proxy (i.e., a model) for the
subject’s hypothesized expectation of which locations
in a scene would be more or less likely to draw the
gazer’s visual attention.

We made one further adjustment to the Judd et al.
(2009) salience maps before they entered into the
computational model. As explained in the previous
section, our Bayesian model of human gaze perception
employs a likelihood function that is derived empiri-
cally from judgments the individual subject makes
about where the gazer is looking within a uniform gray
surface. Thus, the subject’s spatial biases (namely,
center bias) will already be largely accounted for via the
likelihood. However, the centers of the Judd et al.
salience maps tend to be more salient because (a) a
strong, explicit center bias is a feature of the Judd et al.
algorithm, and (b) high- and low-level features tend,
empirically, to appear toward the centers of images.
Thus, using these salience maps without first correcting
for this center bias will result in a computational model
that double counts this global tendency. To create
salience maps that better reflect local features of
individual images, we first calculated the average
salience map across the set of 165 maps that

corresponding to the images in our set. We then divided
each of the 165 salience maps by the average salience
map, resulting in a set of maps for which no spatial
location was systematically more salient than any other
location across the set. We incorporate these adjusted
salience maps as the prior in our Bayesian model of
human gaze perception (see Figure 2B for an example
of a salience map corresponding to one of the 165
images in our stimulus set; see Figure 3 for an
illustration of how we derived each map.)

The posterior: Combining the eye cue with image
salience

Each scene observed by the subject during the first
block of the experiment featured a photograph of the
gazer fixating in one particular location on a 2-D
surface, and one arbitrary image projected onto that
gazed-upon surface. With respect to each scene, the
posterior prediction of the Bayesian model is the pixel-
by-pixel multiplication of the likelihood function
(associated with the individual subject viewing the
gazer fixating in one particular direction; p[DjGx,y]) and
prior (i.e., the probabilistic salience map computed for
the image; p[Gx,y]). After this multiplication, the
posterior distribution is renormalized to sum to 1. The
resulting prediction is a hybrid of the two maps giving
rise to it, exploiting the local salience within the
neighborhood of locations where the gazer may have
plausibly been looking, given the direction of his eyes.
See Figure 2 for an illustration of how the likelihood
and salience prior are combined to yield the posterior
distribution outputted by the full Bayesian model.

Figure 3. Left: One of the images from the stimulus set. Center: The corresponding salience map, as computed via the Judd et al.

(2009) algorithm. Right: The salience map for this image is divided by the average salience map (top) to yield the normalized salience

map employed by the Bayesian model (bottom).
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Results

Validation of the likelihood model

Each subject’s personalized likelihood function—a
set of 33 ellipses fit to his or her 660 gaze judgments
made during Blocks 2–5—was first assessed and
optimized via a cross-validation procedure. A set of
ellipses was fit to the subject’s responses during three of
these blocks of trials, and tested on how well it
predicted responses on the fourth block. This leave-
one-out cross-validation was performed each of the
four possible ways (leaving each of the four blocks out
as the test set).

After fitting a set of 33 Gaussian ellipses to a training
set of three blocks, the main diagonals of their
covariance matrices R were multiplied by one addi-
tional parameter, which was optimized for each subject
via this same cross-validation procedure. Increasing the
variances of these ellipses in this manner prevented
overfitting to the training set and improved the model’s
ability to predict the subject’s gaze judgments during
the remaining test block. For most subjects, multiply-
ing the variances of the fit ellipses by 1.6 proved to be
optimal.

The cross-validated performance of the likelihood
model was good and remarkably consistent across
subjects. For only one very atypical subject, we were
unable to validate the likelihood model—that is, no
parameterization of the likelihood model trained on
any three of the subject’s blocks was able to predict the
subject’s gaze judgments on the remaining test block
above chance. We therefore excluded this subject from
subsequent analyses.

Model assessment and comparison

We evaluated the full Bayesian model in direct
comparison with a model that only relied on the
perceptual signal from the eye cues of the gazer (i.e., the
unadorned likelihood model, not multiplied with the
salience map). We tested the relative performance of
these two models in predicting the gaze judgments
made by subjects during the first block of the
experiment. During these critical trials, the subject
viewed scenes in which the gazer was presented with a
projected image—unlike in Blocks 2–5, in which the
gazer was presented with a uniform gray surface.

Because the likelihood function (a component of
both the full Bayesian model and the reduced model)
was independently validated and optimized for each
subject with respect to data collected during subsequent
blocks, neither the full Bayesian model nor the reduced
model fit any free parameters to judgments made by the
subjects during the critical first block. Therefore,
although the full Bayesian model is more computa-
tionally elaborate, the relative performance of the two

models can be assessed on equal footing without
making a correction for model complexity (for exam-
ple, with Akaike information criterion; Burnham &
Anderson, 2004).

The relative performance of these two models was
first assessed in terms of log likelihood ratio. For a
given trial, the gaze judgment made by the subject had
a likelihood given the prediction maps of either model
(e.g., as in Figure 2A, C). Over each subject’s 165 trials,
the predictions of the two models were compared via
their cumulative likelihood ratio. The natural loga-
rithm of this ratio was computed for each subject, with
positive values favoring the full Bayesian model and
negative values favoring the reduced ‘‘eye cues only’’
model. By this measure, the cumulative log likelihood
ratio across all subjects (101.9) very strongly favored
the full model.

To estimate the extent to which individual subjects
used the salience prior (and to rule out the possibility
that the previous strong result was driven by only a few
outlier subjects), we fit a parameter (d) to each subject’s
data, optimizing the full Bayesian model with respect to
the likelihood of the subject’s judgments under the
various possible settings of d:

pðGx;yjDÞ}pðDjGx;yÞpðGx;yÞd: ð2Þ
If d were set to 0 for an individual subject’s best-

fitting model, then the addition of the salience map did
not systematically improve (or hurt) the performance of
the model. The higher the d, the more weight the
subject apparently assigned to the salience cue (Figure
4).

In this case, the revised Bayesian model estimated an
additional parameter from each subject’s Block 1 data;
we therefore rely on a parametric t test to assess the
success of this model compared to chance. The mean
subject optimally weighted the salience cue at d ¼ 1.5,
significantly above zero, t(21) ¼ 4.48, p , 0.001.

These data confirmed our hypothesis that subjects
would exploit prior information about the relative
salience of locations in the gazed-upon image, in
addition to using the directional cue from the gazer’s
eyes. To provide additional context for assessment of
our model, we reran the full Bayesian model, but
instead of feeding the model the appropriate salience
map corresponding to the gazed-upon image in a given
trial, we mismatched each image with a salience map
corresponding to one of the other 164 images in the set.
The motivation for the assessment of this mismatched
Bayesian model was to examine whether the true
Bayesian model had improved the performance of the
reduced ‘‘eye cues only’’ model for some superficial
reason that was not specific to features of the particular
image.

Whereas using the true salience maps had consis-
tently improved the performance of the reduced ‘‘eye
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cues only’’ model across subjects, using mismatched
salience maps only made the performance of the model
worse, such that one would have been far better off
using the reduced model (cumulative log likelihood
ratio¼�57.9). Repeating the parameter-fitting proce-
dure used to estimate the extent to which each subject
used the salience prior, we found that the optimal
model for each subject, on average, did not assign any
weight to this mismatched salience map (mean d¼ 0.0;
t[21] ¼ 0.13, p ¼ 0.90). Thus, incorporating a
mismatched salience map merely added noise to the
model—not just any prior will do.

Experiment 2

In Experiment 2, we again presented subjects with
scenes featuring the gazer fixated on various locations
on a semitransparent surface. In all trials of Experi-
ment 2, an arbitrary image was projected onto that
surface (as in Block 1 of Experiment 1). To examine the
time course of the salience effects observed in
Experiment 1, as well as the influence of spatial biases
at different viewing durations, we manipulated the
amount of time subjects were allowed to view these
scenes before judging the target of gaze.

At shorter viewing durations, the social signal (i.e.,
the eye cue) will be less reliable. This will also be true of
the presumed relative visual salience of the various

locations in the gazed-upon image, a contextual cue
that requires time to be evaluated by the observer. By
examining the extent to which image salience influences
gaze judgments at different timescales, we attempted to
gain insight into the rates at which useful information
from different sources is extracted to inform these
judgments.

Methods

Subjects

Forty-one undergraduates at Indiana University
received course credit for their participation in the
experiment.

Stimuli

Experiment 2 utilized the same set of 33 photo-
graphs of the gazer as in Experiment 1, and projected
the same 165 color images into these photographs.

Procedure

The experiment consisted of two blocks, each
consisting of 165 consecutive trials. Before the first trial
of each block, four photographs were displayed in
succession, each for 1 s—the same calibration em-
ployed in Experiment 1. Each trial began with a black
fixation cross, presented at the center of the screen for
1.4 s against a gray background. The subject was then
presented with a static scene. These scenes featured
each of the 33 photographs of the gazer (fixating on 33
respective locations) five times per block, and these 33
3 5 ¼ 165 total trials were randomly shuffled. One of
165 color images from the stimulus set was randomly
assigned to each of these 165 trials and projected into
the frame in front of the gazer; thus, the projected
image and the direction of the subject’s gaze in the
photograph were randomly paired and presented
simultaneously. The first three trials of each block were
considered practice and were excluded from analysis.

Each scene was displayed for one of five different
durations: 150, 300, 600, 1200, or 2400 ms. This
viewing duration was crossed with the gazer’s 33
possible eye directions such that every combination of
viewing duration and gaze direction was viewed once
per subject per block. After the presentation of a scene,
the scene was replaced with a Gaussian noise mask.
Only a black frame remained visible to the subject,
demarcating the edges of where the projected image
had been situated. A 10-310-pixel red square appeared
at a random location within the frame, and could be
controlled by the mouse. The subject indicated with a
mouse click where, within the frame, he or she believed
that the gazer had been looking in the image (before the

Figure 4. Each of the 22 subjects is represented as an increment

in these empirical cumulative distribution functions. Using a

salience map as a prior improves the performance of the model

with respect to the judgments of 18 out of 22 subjects (black;

median d ¼ 1.4). By comparison, using a mismatched salience

map as a prior does not systematically improve performance

(gray; median d ¼ 0.1).
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scene had been masked). There was no enforced time
limit for response; after the subject clicked, the next
trial began.

Results

We examined whether the relative salience of
locations in the projected image influenced subjects’
gaze judgments differently at different timescales. To
preface these analyses, the answer to this question
appears to depend on one’s working definition of
‘‘salience.’’

Using the full Judd et al. (2009) algorithm—
uncorrected for center bias—as our model of salience,
we found that when subjects were only allowed to view
a scene for a short time, they tended to judge more
salient locations as the target of gaze (Figure 5; The
mean slope of linear regressions of viewing duration vs.
location salience—fit to each individual subject—was
significantly negative, t[40] ¼�6.71, p , 0.001)—that
is, the more limited the subject’s exposure to the scene,
the more subjects’ relied on the prior. However, a more
thorough examination of the data reveals that this
interpretation of the data does not tell the full story.

As in Experiment 1, we averaged the salience maps
corresponding to all of the stimulus images, resulting in
a composite map reflecting the global tendency for
locations toward the center of each image to be salient.
As illustrated in Figure 5, the tendency for subjects to
rely more on image salience at shorter viewing
durations can be attributed to this center bias; if one
only used the composite average map to predict
subjects responses, one would observe the same,
strongly negative relationship between viewing dura-
tion and salience, t(40)¼�8.68, p , 0.001.

On the other hand, if one controlled for the typical
salience across images at each location in the scene (by
dividing off the average salience map from the full
salience map generated for each image), one could
instead ask, ‘‘How salient was the location selected by
the subject, compared to the average salience at that
location?’’—that is, above what is typical for that
spatial location across images. And in this case, the
effect reverses direction: Subjects tended to select more
salient locations when they had more time to view the
scenes, t(40)¼ 2.40, p ¼ 0.02.

Thus, the timescale of the effect of image salience on
gaze perception depends on one’s working definition of
‘‘salience.’’ Further exploring this discovery, we re-
computed the salience maps for our set of images using
the Judd et al. (2009) algorithm, but this time only
included the low-level features of the images in the
computation of the maps. We therefore isolated these
features from explicit center bias as well as mid- and
high-level features (including horizon, car, face, and
people detection).1

Using this reduced model, we find a different result
(Figure 6). With the exception of a possible dip at 600
ms, the locations selected by subjects tend to be
approximately equally salient across timescales (the
mean slope of the regression of viewing duration vs.
salience was not significantly different from zero, t[40]
¼�0.14, p¼ 0.89). Using another salience algorithm
(Boolean Map–based Saliency; Zhang & Sclaroff,
2013)—which likewise employs only low-level features,
and has been validated on this same set of images—we
find a similar pattern of results, t(40) ¼ 0.79, p¼ 0.44.

With respect to both the reduced Judd et al. (2009)
model and the Boolean Map–based Saliency model,
more salient locations still tend to be more centrally
located in images, even without the inclusion of any
explicit center bias as a feature. Given the large and

Figure 5. Experiment 2. The average salience of the location selected by subjects, across viewing duration conditions (the x-axis is log

scaled). Salience computed with the full Judd et al. algorithm is in magenta; salience computed using the average salience map across

the entire set of stimulus images is displayed in red; the computed salience of the location, divided by the average salience across all

images at that location, is displayed in blue, and zoomed in on in the right panel. Error bars represent 6 SEM.
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robust tendency for subjects to have a strong center
bias at short viewing durations, our best interpretation
of the data conveyed in Figures 5 and 6 is that center
bias tends to dominate at shorter viewing durations,
but other salient, low-level features of the images may
operate at longer timescales. Whereas center bias is
present at the start of each trial—truly ‘‘prior’’ to the
stimulus—the salient features of the images need to be
computed, and therefore may come to influence
subject’s gaze judgments at later timescales. These
countervailing effects likely produce the flat or U-
shaped curves observed in Figure 6.

In summary, when subjects were only allowed to
view a person gazing at an image briefly, they showed a
strong center bias in their estimates of where the gazer
was looking in the projected image. Greater reliance on
this prior bias was predictable, because the processed
signals from both the gazer’s eyes and the contextual
image salience are less reliable at shorter timescales. As
the viewing duration was increased, the influence of
salience with respect to the local features of the gazed-
upon image became more apparent.

Discussion and conclusions

In this article, we developed a Bayesian model of
gaze perception, which takes into account both cues
from the gazer’s eyes and prior salience information

present in the visual scene. Via a quantitative model
comparison, we demonstrated in Experiment 1 that this
full Bayesian model accounts for the performance of
most subjects better than a reduced model that only
takes the eye cues into account. The full Bayesian
model also easily outperforms a model that incorpo-
rates incorrect (and empirically useless) salience infor-
mation. We consider these data to be strong
preliminary support for a Bayesian account of human
gaze perception, and of closely related social processes
like gaze following and joint attention.

The data from Experiment 1 may also indicate that a
subset of subjects (;18%) utilized only the cues from
the eyes of the gazer. These individual differences in
strategy raise many questions to be addressed in future
experiments: Was the salience algorithm we employed a
poor model for where a minority of subjects expect
other people will look in the scene? Is the tendency to
use one strategy over the other relatively stable to the
individual? Would certain clinical populations (e.g.,
individuals with autism spectrum disorder) show a
systematic tendency to use one strategy versus the
other? In other words, were the individual differences
we observed meaningful?

We emphasize that we do not mean to present this
paper as a study of how gaze perception relates to
salience (defined in any one particular way, via any
specific algorithm), as a visual feature in itself. Rather,
we use computed salience (according to one algorithmic
approach) as a simplified stand-in (that is, a model) for
the predictive computation of which locations in a
scene would be expected to draw another person’s
visual attention. Most subjects’ judgments revealed that
they were at least implicitly sensitive to these a priori
expectations, which were apparently correlated with the
output of the salience model we employed. On the other
hand, we acknowledge that the locations in scenes at
which one would expect the gazer to direct his attention
were likely to also be intrinsically salient to the subject
him- or herself. That is, expected salience vis-à-vis the
gazer and subjective salience are strongly correlated.

A clever experiment might be able to decouple these
two qualities. For example, the experimenter could tell
the subject that the gazer is searching for red objects in
each scene, and examine whether subjects then tend to
judge the redder objects or areas of the scene as being
more likely to be the target of gaze. This would
manipulate the subject’s expectations of what is likely
to be salient to the gazer—in one particular context—
under the assumption that red objects become no more
salient to the subject, per se. We have little doubt that
subjects could alter their strategies to modulate their
performance in such a task, especially with practice.
However, this might be achieved by tapping into higher
level processes and decisional criteria that may not be
representative of gaze perception as employed more

Figure 6. Experiment 2. The average salience of the location

selected by subjects, across viewing duration conditions (the x-

axis is log scaled). Salience is computed three ways: the Boolean

Map based–Saliency model (black), the full Judd et al. (2009)

algorithm (magenta), and a reduced version of the Judd et al.

algorithm that is only computed with respect to low-level

features (green). Error bars represent 6 SEM.
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naturally and reflexively in more typical situations.
Further, if the subject knew that particular features of a
scene were likely to be especially salient to the gazer, it
is quite plausible that these features would irresistibly
become more salient to the subject him- or herself. This
would defeat the purpose an experiment designed to
decouple these qualities.

The bad news, therefore, is that what one expects to
be salient to another and what is salient to oneself may
indeed be hopelessly confounded for the purposes of an
empirical study like this. The good news is that in most
naturalistic situations, these two qualities are also
confounded with one another. If there is something
that draws one person’s attention, it is likely to draw
others’ attention as well (Borji, Parks, & Itti, 2014). The
human perceptual apparatus does not lament this
correlation, but exploits it: One can continually
leverage the successful computation of one of these
qualities to help infer the other. That these comple-
mentary processes (predicting the probable locations of
salient objects from another’s gaze and inferring the
target of another’s gaze from the locations of salient
objects) provide ample feedback for one another may
be the basis for efficient learning during early social
development (Triesch, Jasso, & Deák, 2007).

A Bayesian account of eye gaze perception makes
several specific predictions for how various experi-
mental manipulations will affect gaze judgments. For
example, the noisier the social signal, the more the
observer should rely on prior information. In Exper-
iment 2, we manipulated the amount of time subjects’
were exposed to scenes. Because at shorter durations,
subjects’ exposure to both eye cues and image salience
cues was limited, the influence of both of these cues was
enhanced at longer durations. Spatial biases—which
are truly prior to the stimulus—prevailed at earlier
timescales. An analogous result with respect to spatial
biases in gaze judgments was also observed by
Mareschal, Calder, Dadds, and Clifford (2013), who
found subjects’ prior bias toward direct eye contact was
modulated by the amount of noise the experimenters
added to the observed eyes.

We expect that many other manipulations like this
could also be applied to the basic experimental
framework presented in this paper, with analogous
results. Besides varying stimulus duration or adding
noise to the gazer’s eyes (e.g., via blurring), one could
manipulate the size or contrast of the stimulus, or the
distance between the gazer and the gazed-upon surface
in the scene. The perceptual consequences of each of
these manipulations could then be interpreted within
the context of this Bayesian treatment, providing
additional insight into the nature of human gaze
perception.

Keywords: eye gaze perception, Bayesian modeling,
social perception, visual attention, salience
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Footnote

1 These higher level features likely operate on their
own respective timescales in terms of their influence on
subjects gaze judgments. However, the higher level
aspects of the Judd et al. salience model were difficult to
analyze in isolation for numerous reasons: (a) Higher
level features (such as faces) also tend to be more
centrally located, and more salient with respect to low-
level features; (b) The higher level maps consist of
discrete bounding boxes, which are often as large or
larger than the area of an image that might be plausibly
selected by the subject; thus, it is unclear whether they
can be used as sensitive measures of performance
difference across experimental conditions; and (c)
High-level features (faces, people, and cars) were only
present in a subset of the images, and the algorithms
used to detect these features did not have perfect
sensitivity. These considerations limited our ability and
statistical power to analyze the timescales of the
influence of these higher level features on subject
performance.
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